
Malaysian Journal of Mathematical Sciences 18(3): 597–616 (2024)
https://doi.org/10.47836/mjms.18.3.09

Malaysian Journal of Mathematical Sciences

Journal homepage: https://mjms.upm.edu.my

Streamline Diffusion Weak Galerkin Finite Element Methods for Linear
Unsteady State Convection Diffusion Equations and Error Analysis

Abed, I. A.∗1 and Kashkool, H. A.1

1Department of Mathematics, College of Education for Pure Sciences,
University of Basrah, Basrah, Iraq

E-mail: ibtehalahmedalsady@gmail.com
∗Corresponding author

Received: 19 January 2024
Accepted: 10 June 2024

Abstract

In this paper, the streamline diffusion weak Galerkin finite element method is proposed and
analyzed for solving unsteady time convection diffusion problem in two dimension. The v-
elliptic property and the stability of this scheme are proved in terms of some conditions. We
derive an error estimate in L2(µ) and H1(µ) norm. Numerical experiments have demonstrated
the effectiveness of the method in solving convection propagation problems, and the theoretical
analysis has been validated.

Keywords: streamline diffusion; weak Galerkin finite element; discrete gradient; stability; error
analysis.

https://mjms.upm.edu.my


I. A. Abed and H. A. Kashkool Malaysian J. Math. Sci. 18(3): 597–616 (2024) 597 - 616

1 Introduction

This paper is dealing with problems that are mainly of a hyperbolic character, such as the
convection-diffusion problemwith a small or vanishing diffusion. This type of problem is typically
encountered in fluid mechanics, gas dynamics, or the propagation of waves [16].

Let us consider the following example of a linearly unstable convection-diffusion problem. We
are seeking the unknown function ω = ω(x; t)which satisfies

ωt − ϵ∆ω + β · ∇ω + cω = f(x, t), (x, t) ∈ µ× (0, T ],

ω(x, 0) = 0, x ∈ µ,

ω(x, t) |Γ= g, (x, t) ∈ Γ× (0, T ].

(1)

Consider a region µ ⊂ R2 with a boundaryΓ that is Lipschitz continuous. The functionω = ω(x, t)
is represented by its gradient ∇ω. Furthermore, the symbol ϵ > 0 represents the diffusion coef-
ficient, β represents the convection coefficient, and f and g are given functions. The phenom-
ena of convection, diffusion and interaction are widespread in various scientific and engineering
fields. These processes are crucial in fluid dynamics, heat and mass transfer, hydrology, and re-
lated fields. Convection-dominated diffusion equations, such as fluid flow and semiconductor
device modelling, are used in practical physics. Solutions to these problems typically exhibit lay-
ers and narrow regions where some derivatives of the first-order solution are significantly large.
Finding accurate solutions within these layers is a significant challenge as these are areas where
the solution is still ongoing, but the gradients are substantial. Layers cannot be resolved because
their width is generally much less than the width of the available digital grid.

Solving the linear convective diffusion equation can be challenging under singular perturba-
tions despite its seemingly straightforward nature. Thin layers, characterized by rapid changes in
the solution and its derivatives, often emerge in the boundary value problem due to the extremely
lowdiffusion coefficient [25]. Finding analytical solutions formathematical models encapsulating
convective and diffusive effects is generally considered impractical. Therefore, numerical methods
are often necessary to estimate unknown parameters. These equations’ scrutiny and computa-
tional resolution have attracted considerable attention, reflecting the inherent complexity of con-
currently addressing convective and diffusive processes. However, traditional numerical methods
could be more effective in typical cases where convection dominates over diffusion, as the approx-
imate solutions often contain unwanted oscillations. This is related to the fact that solutions to
convection-dominated problems often exhibit layers, confined regions characterized by sudden
changes in the solution. This aspect attracts several specialists in various fields [24].

Consequently, many individuals from various fields, including athletes and engineers, have
shown interest in this approach. The physical process of diffusion imparts a property through
the movement of liquid molecules, while convection involves the motion of a flow that conveys
specific attributes. Partial differential equations describe the behaviour of fluids undergoing mass
transfer, forced heat, or vortex transfer. Conventional numerical methods may not provide re-
liable approximations in such cases. Studying the effective and computational methods for the
problem of computational mesh not being on the same scale as the layers holds practical signifi-
cance and has captured the attention of many researchers. When dealing with complex domains
or layered structures, fitted operator techniques are frequently used, predominantly employing
upwind-type schemes. Upwinding aims to introduce artificial diffusion/viscosity to counteract
convection and maintain the stability of a traditional discretization approach. Upwind schemes
were initially introduced in finite difference methods and later extended to encompass finite ele-
ment methods. Several stabilization methods have been presented to avoid these spurious oscil-
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lations, including streamline-upwind Petrov-Galerkin (SUPG) methods [6, 14], local projection
stabilization methods [3, 23, 25], discontinuous Galerkin methods [2, 26, 18], artificial diffusiv-
ity methods [9, 19, 20], upwinding techniques [27, 17, 5], streamline diffusion methods [29, 13],
Petrov-Galerkin approaches [8, 30, 21] and several alternatives were compared in [4, 15]. Al-
though much work has been devoted to the numerical solution of convection-dominated equa-
tions, no method could still be considered entirely satisfactory. For example, the popular SUPG
method suffers from producing overshoots and undershoots near the layer region.

The weak Galerkin finite element method (WGFEM) emerges as an innovative framework
for tackling partial differential equations. Initially developed by Wang and Ye [28, 22], WGFEM
proves effective in numerically solving second-order elliptic equations. Notably, this numerical
technique allows for the utilization of discontinuous functions and features a straightforward for-
mulation independent of parameters, courtesy of weak function andweak gradient concepts. Gao
et al. [10] presented numerical methods for Sobolev problems using the weak Galerkin finite ele-
mentmethod. Zhang and Lin [31] explored the samemethod for steady-state Navier-Stokes equa-
tions. Applying a similar approach, Cheichan et al. [7] resolved the one- and two-dimensional
nonlinear convection-diffusion equations. Hussein and Kashkool [11, 12] employed the weak
Galerkin technique to solve interconnected one-dimensional and two-dimensional Burgers equa-
tions.

This project will modify the weak Galerkin finite element method to include a streamlined
diffusion term. This additional term is written as −δuββ , which introduces diffusion only in the
direction of β. Moreover, wewill study the semi-discrete streamline diffusionweak Galerkin finite
element method for linear unsteady state convection-diffusion problems. We present the elliptic
property and the stabilization for semi-discrete schemes. In the L2 andH1 norm, we will analyze
error estimates and a numerical experiment.

2 Outline and Preliminaries

These Sobolev spaces are defined according to a standard set of practicesHC(Q) and its related
inerts (·, ·)C,Q, norms ∥ · ∥C,Q, and seminorms | · |C,Q for C ≥ 0. For example, [28] for any integer
C ≥ 0, the seminorm | · |C,Q is given by

|v|C,Q =

 ∑
|n|=C

∫
Q

|∂nv|2 dQ

 1
2

,

with the usual notation

n = (n1, n2) , |n| = n1 + n2, ∂n = ∂n1
x1
∂n2
x2
.

The Sobolev norm ∥ · ∥s,Q is given by

∥v∥s,Q =

(
Q∑
i=0

|v|2i,s

) 1
2

.

The spaceH0(Q) coincides with L2(Q), for which the norm and the internal results are indicated
by ∥ · ∥Q and (·, ·)Q, respectively. When Q = µ, we are dropping the subscript Q in the norm
and the internal notation used for products. The spaceH(div;µ) is the collection of vector-valued
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functions on the µ, which are integrable as well as their diverging squares, which means that

H(div;µ) =
{
v : v ∈

[
L2(µ)

]2
,∇ · v ∈ L2(µ)

}
.

The norm in H(div;µ) is defined by

∥v∥H(div;µ) =
(
∥v∥2 + ∥∇ · v∥2

) 1
2 .

The standard Galerkin finite element method (weak form) of Equation (1) seeks ω ∈ H1
0 (µ) such

that ω = g on Γ× (0, T ] and

(ωt, v) + (ϵ∇ω,∇v) + (β · ∇ω, v) + (cω, v) = (f, v),∀v ∈ H1
0 (µ). (2)

3 Weak Galerkin Finite Element Method

The approach of a gradient operator with a weak definition for discontinuous functions was
originally used in [28] to describe weak Galerkin finite elements. The weak gradient operator is
used in weak Galerkin finite element methods to approximate weak gradients and divergences.
LetK, which represents a polygonal domain with an interior and a boundary. The function ω is a
vector function, whereK0 represents the interior of the domain andKb represents the boundary.
For better understanding, technical terms are explained in detail. W (K) refers to the features of
the function space K that are characterized by their weakness,

W (K) =
{
ω =

{
ω0, ωb

}
: ω0 ∈ L2(K0), ωb ∈ H

1
2 (∂K)

}
.

Definition 3.1. The dual of L2(K) can be identified with itself by using the standard L2 inner product as
the action of linear functionals. With a similar interpretation, for any ω ∈ W (K), the weak gradient of ω
is defined as a linear functional ∇dω in the dual space of H(div,K) whose action on each q ∈ H(div,K)
is given by

(∇dω, q) := −
∫
K

ω0∇ · qdK +

∫
∂K

ωbq · nds,

where n is the outward normal direction to ∂K.

This part will introduce two crucial finite element spaces for defining numerical schemes. The
triangular partitionNh is a subdivision of the domain µ into elements ℵ, where each element has a
uniform mesh size of h. Pm (ℵ) refers to the collection of polynomials defined on the internal of ℵ
with a degree greater thanm. Moreover, we denote the collection of polynomials on the boundary
of ℵ with a degree less than or equal to l as Pl(∂ℵ). Let us define a discrete weak function ω as
ω =

{
ω0, ωb

}
, where ω0 belongs to the space Pm (ℵ) and ωb belongs to the space Pl(∂ℵ). The

variables m and l denote numbers greater than or equal to zero. The specified region is often
written as

W (ℵ,m, l) =
{
ω =

{
ω0, ωb

}
: ω ∈ Pm

(
ℵ0
)
, ωb ∈ Pl(∂ℵ)

}
.

The finite element space for this would be constructed by combining the spaceW (ℵ,m, l) for each
triangle ℵ in the triangulation Nh. The weak finite element space can be precisely defined as

Sh(m, l) =
{
ω =

{
ω0, ωb

}
:
{
ω0, ωb

}∣∣
T
∈ W (ℵ,m, l),∀ℵ ∈ Nh

}
.
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The associated finite element space is the union of spaces called W (ℵ,m, l) for all triangles ℵ in
triangulation Nh. The weak finite element space can be denoted as

S0
h(m, l) =

{
ω =

{
ω0, ωb

}
∈ Sh(j, l) : ω

b
∣∣
∂ℵ∩∂µ

= 0, ∀ℵ ∈ Nh

}
.

Wewill define a discrete weak gradient operator by explicitly describing the operator∇d within a
polynomial subspace of the spaceH(div,K). Let r be a non-negative integer greater than or equal
to zero to achieve this goal. The set of polynomials on ℵwhose degree does not exceed r is called
Pr(ℵ). Let us examine the subspace V (ℵ, r), which is a subset of the space [Pr(ℵ)]2 and consists
of vector-valued polynomials of degree r. The discrete weak gradient operator of the function ω
on each element ℵ, denoted as ∇d,r for each ω =

{
ω0, ωb

}
∈ Sh(m, l), can be represented by the

following equation [28]:∫
ℵ
∇d,rω · qdℵ = −

∫
ℵ
ω0∇ · qdℵ+

∫
∂ℵ

ωbq · nds,∀q ∈ V (ℵ, r).

We determine the bilinear form that follows ω, v ∈ Sh(m, ℓ),

aWG(ω, v) = (ϵ∇d,rω,∇d,rv) +
(
β · ∇d,rω, v

0
)
+
(
cω0, v0

)
,

where

(ϵ∇d,rω,∇d,rv) =

∫
µ

ϵ∇d,rω · ∇d,rvdµ,(
β · ∇d,rω, v

0
)
=

∫
µ

β · ∇d,rω
0vdµ,

(
cω0, v0

)
=

∫
µ

cω0v0dµ.

A numerical approximation for equation can be obtained by searching for the values of ωh ={
ω0, ωb

}
in the function spaceSh(m, l) that satisfy the boundary conditionωb = Qbg on the bound-

ary ∂µ, together with the given equation,

( (ωh)t , v
0
)
+ aWG (ωh, υ) =

(
f, v0

)
, ∀υ =

{
υ0, υb

}
∈ S0

h(m, l). (3)

The expression Qbg approximates the boundary value in the polynomial space Pl(∂ℵ ∩ ∂µ). For
simplicity, we will useQbg as the default L2 projection for each boundary segment, ignoring other
approximations of the boundary value ω = g. Let us denote ω ∈ Hk+1(µ), where k ≥ 1, as the
exact solution of Equation (1). To continue, we will present the L2 projections,

Qh : L2(ℵ) → Pk(ℵ); ∀ℵ ∈ ℵh,

Rh :
[
L2(ℵ)

]2 → [Pk−1(ℵ)]2 ;∀ℵ ∈ ℵh .

Two beneficial identities can be easily observed to exist

∇d,r (Qhu) = Rh(∇u), ∀u ∈ H1(ℵ).

This method will yield satisfactory results if the magnitude of ϵ is significantly greater than that
of ∥β∥L∞(µ) h. However, this approach may produce a solution that exhibits oscillations and de-
viates significantly from the exact solution if the magnitude of ϵ is significantly smaller than that
of ∥β∥L∞(µ) h. Furthermore, as shown in Figure 1, precision is lacking in approximating the exact
solution over the entire range. The lack of smoothness in the exact solution of many interesting
elliptic equations is the reason for the importance of this topic. Recently, there have been improve-
ments in dealingwith these difficulties, allowing the creation ofmodified unconventionalWGFEM
that exhibit favorable convergence characteristics when used in elliptic cases.
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We solved the problem by using a method known as the classical artificial diffusion of weak
Galerkin finite elementmethod (CADWGFEM).Although this technique provides non-oscillatory
solutions, it has the disadvantage of introducing a significant amount of additional diffusion,
which comes at a significant cost in terms of increased diffusion. Specifically, this method intro-
duces a diffusion term −hωββ in the β direction, perpendicular to the streamline, which accounts
for crosswind diffusion [1]. As a result, abrupt fronts or jumps across a streamline are excep-
tionally damped. Furthermore, an additional term −δ∆ω is included. It is important to note that
this method only achieves first-order accuracy, and even for smooth solutions, the error is at best
in the order of O(h). The resulting solution is a numerical approximation. It is characterized by
smoothing effects on the transformations, similar to the solution derived from the fundamental
equation.

4 Streamline Diffusion Weak Galerkin Finite Element Method

Several specific techniques have been devised for the numerical resolution of convective prop-
agation problems. To study the numerical solution, we use a uniform mesh with a diameter of
h and Nh is quasi-uniform or ∥β∥ it is equal to 1. Traditional numerical methods show subop-
timal performance when the disturbance parameter ϵ is smaller than the h. In such cases, the
generated solutions often exhibit unwanted spurious oscillations throughout the entire domain.
To address the challenges associated with this excessive diffusion, recent research has explored
alternative techniques, such as streamline diffusion [16] and streamline upwind Petrov-Galerkin
(SUPG) methods [14]. These newer approaches aim to maintain stability while minimising un-
necessary crosswind smoothing. The crosswindmotion alignedparallel to the streamlines exhibits
a smoother and uninterrupted transition in these refined methods, providing a more balanced
trade-off between stability and solution accuracy.

Several specific techniques have been devised for the numerical solution of convective propa-
gation problems. We will leverage one of the most widely used techniques, the WGFEM. The dif-
ferential equation is modified to include a streamline diffusion term that introduces diffusion only
in the direction β of the streamlines (often called the streamline direction for static problems). The
stabilization is realized by adding the term−δuββ into the equation, with δ being a positive param-
eter. This supplementary diffusion aims to yield a more stable solution true to physical realities
by diminishing oscillations. Specifically, δ is set equal to h− ε when ε < h, and δ is zero if ε ≥ h.
This approach is the streamline diffusion weak Galerkin finite element method (SLDWGFEM).
The SLDWGFEM is used to solve (1), which reads: Find the solution ωh =

{
ω0, ωb

}
∈ Sh(m, l)

that satisfies the boundary condition ub = Qbg on ∂ω:

( (ωh)t , v
0
)
+ aSLDWG (ωh, v) =

(
f, v0

)
, ∀v =

{
v0, vb

}
∈ S0

h(m, l), (4)

where
aSLDWG (ωh, v) = (ϵ∇d,rωh,∇d,rv) + δ (β · ∇d,rωh, β · ∇d,rv)

+ (β · ∇d,rωh, v) +
(
cωh, v

0
)
.

(5)

This method introduces less crosswind diffusion than the CADWGFEM. For (4), we will now
demonstrate the elliptic property of SLDWGFE.

Lemma 4.1. The bilinear form aSLDWG (ωh, v) described in (5) on the weak finite element space Sh(m, l)
is provided by: There exists a positive constant φ that satisfies

aSLDWG (vh, vh) ≥ φ
(
∥∇d,rv∥2 +

∥∥v0∥∥2) ,
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for all vh ∈ Sh(j, i).

Proof. Substituting ω = v into (5), we get

aSLDWG (vh, vh) = δ (β.∇d,rv, β.∇d,rv) + ε (∇d,rv,∇d,rv) +
(
β · ∇d,rv, v

0
)
+
(
v0, v0

)
. (6)

Let B = ∥β∥L∞(Ω) and C = ∥c∥L∞(Ω) be the L∞-norm of the coefficients β and c, respectively.
Using the Cauchy-Schwarz inequality we have

|δ (β.∇d,rv, β.∇d,rv)| ≤ δ ∥β · ∇d,rv∥ ∥β · ∇d,rv∥

≤ δ∥β∥2L∞(Ω) ∥∇d,rv∥2

≤ δB2 ∥∇d,rv∥2 ,

(7)

and
∣∣(β · ∇d,rv, v

0)
∣∣ ≤ ∥β · ∇d,rv∥

∥∥v0∥∥. Next, using ε Young’s inequality, we derive

∥β · ∇d,rv∥
∥∥v0∥∥ ≤ 1

2γ
∥β · ∇d,rv∥2 +

γ

2

∥∥v0∥∥2
≤ B2

2γ
∥∇d,rv∥2 +

γ

2

∥∥v0∥∥2 , (8)

and ∣∣(cv0, v0) ≤∣∣ ∥c∥L∞(Ω)

∥∥v0∥∥2 ≤ C
∥∥v0∥∥2 . (9)

Substituting (7), (8), and (9) into (6), we obtain

aSLDWG (vh, vh) ≥ ε ∥∇d,rv∥2 −
(
B2

2γ
∥∇d,rv∥2 +

γ

2

∥∥v0∥∥2)+ δB2 ∥∇d,rv∥2 + C
∥∥v0∥∥2

≥
(
ε− B2

2γ
+ δB2

)
∥∇d,rv∥2 +

(
C − γ

2

)∥∥v0∥∥2 . (10)

In (10), the term
(
ε− B2

2γ + δB2
)

> 0 for suffficientely small ε reduce to B2
(
δ − 1

2γ

)
, then we

have

aSLDWG (vh, vh) ≥ φ
(
∥∇d,rv∥2 +

∥∥v0∥∥2) ,
where φ = min

{
B2
(
δ − 1

2γ

)
,
(
C − γ

2

)}
.

5 Stability for SLDWGFEM

Since stability is intricately linked to numerical accuracy, an unstable numerical scheme can
escalate errors within the simulation, which may deviate significantly from the exact solution.
Thus, ensuring the stability of the SLDWGFEM is pivotal to maintaining the accuracy of simu-
lations across temporal or spatial domains. Hence, this chapter is devoted to demonstrating the
stability of the SLDWGFEM for (4).
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Theorem 5.1. For any solution ωh to the problem (1) under the SLDWGFEM formulation in (4), let
Lemma 4.1 be satisfied in Sh(m, l). Given that there is a positive constant J such that the energy of the
solution is bounded over time, we obtain

∥ωh(t)∥2

≤
∥∥ω0

∥∥2 + ∫ t

0

1

J
(∥f(τ)∥2dτ −

∫ t

0

∥∇d,rωh(τ)∥2 dτ +

∫ t

0

J ∥ωh(τ)∥2 dτ −
∫ t

0

∥∥ω0(τ)
∥∥2 dτ.

Proof. Choose v = ωh in (4), we obtain

(ωh,t, ωh) + aSLDWG (ωh, ωh) = (f, ωh) . (11)

From Lemma 4.1, we have

aSLDWG (ωh, ωh) ≥ φ
(
∥∇d,rωh∥2 +

∥∥ω0
∥∥2) , (12)

and

(ωh,t, ωh) =
1

2

d

dt
∥ωh(t)∥2 . (13)

The following can be obtained by applying the Cauchy-Schwarz and Young’s inequality:

(f, ωh) ≤
1√
J
∥f∥

√
J ∥ωh∥

≤ 1

2J
∥f∥2 + J

2
∥ωh∥2 .

(14)

Substituting (12), (13), and (14) into (11), and let φ = 1
2 , then we get

1

2

d

dt
∥ωh(t)∥2 + φ

(
∥∇d,rωh∥2 +

∥∥ω0
∥∥2) ≤ 1

2J
∥f∥2 + J

2
∥ωh∥2 . (15)

Multiply (15) by 2 yields

d

dt
∥ωh(t)∥2 +

(
∥∇d,rωh∥2 +

∥∥ω0
∥∥2) ≤ 1

J
∥f∥2 + J ∥ωh∥2 , (16)

and integral both side from 0 to t, and applying the initial condition ωh(0) = ω0, we obtain

∥ωh(t)∥2

≤
∥∥ω0

∥∥2 + ∫ t

0

1

J
(∥f(τ)∥2dτ −

∫ t

0

∥∇d,rωh(τ)∥2 dτ +

∫ t

0

J ∥ωh(τ)∥2 dτ −
∫ t

0

∥∥ω0(τ)
∥∥2 dτ. (17)

6 The Error Analysis of SLDWGFEM in L2 Norm

In this part, we obtain an error estimate for the SLDWGFEM. First, we examine the error equa-
tions for the SLDWGFEM approximations, denoted as ωh, and the L2 projection of the exact solu-
tion, denoted as ω, into the weak finite element space, denoted as Sh(m, l). The L2 projection is
denoted by the symbol Qhω ≡

{
Qhω

0, Qhω
b
}
. It is the local L2 projection of each triangular ele-

ment T ∈ Nh onto Pm(T ), where Q0
h is the projection inside the element and Qb

h is the projection
onto the boundary of T .
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Lemma 6.1. [28] For ω ∈ H1+r(Ω) with r > 0, we have

∥πhω −Qhω∥ ≤ Chr+1∥ω∥1+r,

∥ω −Qhω∥ ≤ Chr∥ω∥1+r.

Lemma 6.2. [28] For ω ∈ H1+r(Ω) with r > 0, we have

∥πh(ϵ∇ω)− ϵ∇ (Qhω)∥ ≤ Chr∥ω∥1+r. (18)

Lemma 6.3. Define eh(t) as the difference between Qhω(t) and ωh(t), where eh(t) belongs to the space
S0
h(m, l). The time t is fixed and lies in the interval (0, T ]. For each v ∈ S0

h(m, l), the error equation for
SLDWGFM is given by

(∂teh, v0) + aSLDWG (eh, v) = ℓ(ω, v), (19)

where
ℓ(ω, v) = δ (πh (β · ∇d,rω)− β ·Rh(∇ω), β · ∇d,rv) + (πh (ϵ∇d,rω)− ϵRh(∇ω),∇d,rv)

−
(
πhω −

(
Q0ω

)
,∇d,r · (βv

)
) +

(
cω − c

(
Q0ω

)
, v0
)
.

Proof. Consider v =
{
v0, vb

}
as the testing function, where v belongs to the set S0

h(m, l). By test-
ing (1) against v0, together with (4), we have(

ωt, v
0
)
+ (πh (ϵ∇d,rω) ,∇d,rv) + δ (πh (β · ∇d,rω) , β · ∇d,rv)

− (πhω,∇d,r · (βv)) +
(
cωh, v

0
)
=
(
f, v0

)
.

(20)

Adding and subtracting the term aSLDWG (Qhω, v), where

aSLDWG (Qhω, v) = (ϵ∇d,r (Qhω) ,∇d,rv) + δ (∇d,r (β ·Qhω) , β · ∇d,rv)

−
((
Q0ω

)
,∇d,r · (βv)

)
+
(
c
(
Q0ω

)
, v0
)
.

On the left hand side of (20) and using
(
Qhωt, v

0
)
=
(
ωt, v

0
)
, we obtain

(Qhωt, v
0) + (πh(ϵ∇d,rω)− ϵ∇d,r(Qhω),∇d,rv) + δ(πh(β · ∇d,rω)− β · ∇d,r(Qhω), β · ∇d,rv)

− (πh(ω)− (Q0ω),∇d,r · (βv)) + (cω − c(Q0ω), v0) + (ϵ∇d,r(Qhω),∇d,rv)

+ δ(β · ∇d,r(Qhω), β · ∇d,rv)− ((Q0ω),∇d,r · (βv)) + (c(Q0ω), v0)

= (f, v0),

and then using Rh(∇ω) = ∇d,r (Qhω) for ω ∈ H1, we obtain(
ωh,t, v

0
)
+ aSLDWG (ωh, v)

= aSLDWG (Qhω, v) +
(
Qhωt, v

0
)
+ (πh (ϵ∇d,rω)− ϵRh(∇ω),∇d,rv)

+ δ (πh (β.∇d,rω)− β ·Rh(∇ω), β · ∇d,rv) +
(
cω − c

(
Q0ω

)
, v0
)

−
(
πh(ω)− β

(
Q0ω

)
,∇d,r · (βv)

)
,

(21)

which can be restated
((ωh −Qhω)t , v0

)
+ aSLDWG (ωh −Qhω, v)

= δ (πh (β · ∇d,rω)− β ·Rh(∇ω), β · ∇d,rv)

+ (πh (ϵ∇d,rω)− ϵRh(∇ω),∇d,rv)−
(
πhω −

(
Q0ω

)
,∇d,r · (βv

)
)

+
(
cωh − c

(
Q0ω

)
, v0
)
.

(22)

Equation (22) is called the error equation for SLDWGFEM.
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Lemma 6.4. Suppose the dual of problem (1) exhibits H1+k regularity. Consider ω ∈ H1+k(µ) as the
solution to (1), with ωh representing the SLDWGFEM approximation derived from (4) through the em-
ployment of the weak finite element spaces Sh(m, l). Let e = ωh−Qhω, whereQhω denote theL2 projection
of ω onto the corresponding finite element space, which is defined locally. Then, there exists a constant C
such that

∥e(t)∥2 + C1

∫ t

0

∥e(τ)∥2dτ ≤ Ch2k+2

∫ t

0

∥ω(τ)∥21+kdτ + ∥e(0)∥2.

Proof. For t ∈ (0, T ], let e = {ωh −Qhω} =
{
e0, eb

}
=
{
ω0 −Q0ω, ωb −Qbω

}
, and taking v = e

in (22), we have

(et, e) + aSLDWG(e, e) = (πh (ϵ∇d,rω)− ϵRh(∇ω),∇d,re)

+ δ(πh (β · ∇d,rω)− β ·Rh(∇ω), β · ∇d,re)

−
(
πh(ω)−

(
Q0ω

)
,∇d,r · (βe)

)
+
(
cω − c

(
Q0ω

)
, e
)
.

(23)

The assumed H1+k regularity for dual problem implies the existence of a constant C such that

∥ω∥1+k ≤ C ∥e0∥ .

By Cauchy-Schwartz and the Lemma 4.1 and Young’s-inequality of the bilinear form, we have

1

2

d

dt
∥e∥2 + ϑ

2
∥e∥2 + ϑ

2
∥∇d,re∥2 =

4∑
i=1

Ii, (24)

where
I1 = (πh (ϵ∇d,rω)− ϵQh(∇ω),∇d,re) ,

I2 = δ (πh (β · ∇d,rv)− β ·Qh(∇ω), β · ∇d,re) ,

I3 = (πh (v)−Qh(∇ω),∇d,r(βe)) ,

I4 =
(
cω − c

(
Q0ω

)
, e
)
.

To estimate I1 by Cauchy-Schwartz and Young’s-inequality, we obtain∣∣I1∣∣ ≤ 1

2∅
∥πh (ϵ∇d,rω)− ϵQh(∇ω)∥2 + ∅

2
∥∇d,re∥2

≤ 1

2∅
∥πh (ϵ∇d,rω)− ϵQh(∇ω)∥2 + C ∥e∥2 .

By Lemma 6.2, we have ∣∣I1∣∣ ≤ Ch2k∥ω∥21+k + C ∥e∥2 . (25)

To estimate I2 and δ = h− ϵ, we have

I2 = (h− ϵ) (πh (β · ∇d,rω)− β ·Rh(∇ω), β · ∇d,re)

= h (πh (β · ∇d,rv)− β ·Rh(∇ω), β · ∇d,re)− ϵ (πh (β · ∇d,rω)− β ·Rh(∇ω), β · ∇d,re) ,

where I2 = I21 − I22. To find I21 by Cauchy-Schwartz and Young’s-inequality and Lemma 6.2, we
obtain

I21 ≤ h2

2∅
∥πh (β · ∇d,rω)− β ·Rh(∇ω)∥2 + ∅

2
∥β · ∇d,re∥2

≤ h2∥β∥2

2∅
∥πh (∇d,rω)−Rh(∇ω)∥2 + ∅∥β∥2

2
∥∇d,re∥2

≤ Ch2k+2∥ω∥21+k +
α

2
∥∇d,re∥2 .

(26)
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To find I22 by Cauchy-Schwartz and Young’s-inequality, we obtain

I22 = δ (πh (β · ∇d,rω)− β ·Rh(∇ω), β · ∇d,re) ,∣∣I22∣∣ ≤ 1

2∅
∥πh (ϵβ∇d,rω)− ϵβ ·Rh(∇ω)∥2 + ∅

2
∥β · ∇d,re∥2 .

(27)

By Lemma 6.2, we have∣∣I22∣∣ ≤ c

2∅
∥β∥2h2k∥ω∥21+k +

∅
2
∥β∥2 ∥∇d,re∥2 ≤ Ch2k∥ω∥21+k +

α

2
∥∇d,re∥2 . (28)

From (26) and (28), we get I2 as follows:

I2 = Ch2k+2∥ω∥21+k − Ch2k∥ω∥21+k. (29)

To find I3, ∣∣I3∣∣ ≤ 1

2∅
∥∥πh(ω)−

(
Q0ω

)∥∥2 + ∥β∥2 ∅
2

∥∇d,re∥2

≤ ch2k+2∥ω∥21+k +
c ∥β∥2 ∅

2
∥ e∥2

≤ Ch2k+2∥ω∥21+k + C ∥e∥2 .

(30)

To estimate I4 by Cauchy-Schwartz and Young’s-inequality and Lemma 6.1, we obtain∣∣I4∣∣ ≤ ∥c∥2

2ϑ

∥∥ω −
(
Q0ω

)∥∥2 + ϑ

2
∥e∥2,∣∣I4∣∣ ≤ Ch2k∥ω∥21+k +

ϑ

2
∥e∥2.

(31)

Substituting (25), (29), (30), (31) into (24), we get

1

2

d

dt
∥e∥2 + ϑ

2
∥e∥2 + ϑ

2
∥∇d,re∥2 ≤ Ch2k+2∥ω∥21+k + Ch2k∥ω∥21+k − Ch2k∥ω∥21+k +

ϑ

2
∥e∥2,

1

2

d

dt
∥e∥2 + ϑ

2
∥e∥2 + Cϑ

2
∥e∥2 ≤ Ch2k+2∥ω∥21+k +

ϑ

2
∥e∥2.

Multiply by 2 and integral both side from (0 to t), we obtain

∥e∥2 + C1

∫ t

0

∥e(τ)∥2dτ ≤ Ch2k+2

∫ t

0

∥ω(τ)∥21+kdτ + ∥e(0)∥2, (32)

where C1 = ϑC.

7 Error Analysis in H1 Norm

Starting with the next lemma, we provide an estimate for the difference between the SLD-
WGFEM approximation, represented as ωh, and the L2 projection of the exact solution for the
original problem.

Lemma 7.1. Let ω be the solution of (1) and ωh ∈ Sh(m, l) be the SLDWGFEM approximation of ω
arising from (4). Denote by eh = ωh − Qhω the difference between the SLDWGFEM approximation and
the L2 projection of the exact solution ω = (ω1, ω2). Then, there exists a constant C such that

∥e0(t)∥2 + η∥∇d,re(t)∥2 ≤
∫ t

0

Ch2k∥ωh(τ)∥2dτ + (∥e0(0)∥2 + η∥∇d,re(0)∥2).
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Proof. Substituting v in inequality (23) by e = et, we arrive at(
e0t , e

0
t

)
+ aSLDWG(et, et) = (πh (ϵ∇d,rω)− ϵQ(∇d,rω),∇d,ret) +

(
cω − c

(
Q0ω

)
, e0t
)

+ δ (πh (β · ∇d,rω)− β ·Q(∇ω), β · ∇d,ret)

+
(
πh(β · ∇d,rω)− (β ·Q∇d,rω) , e

0
t

)
.

(33)

Rewrite (33), we have(
e0t , e

0
t

)
+ aSLDWG(et, et) = (πh (ϵ∇d,rω)− ϵQ(∇d,rω),∇d,ret) +

(
cω − c

(
Q0ω

)
, e0t
)

+ δ (πh (β · ∇d,rω)− β ·Q(∇ω), β · ∇d,ret)

−
(
πh(ω)− (Qω) , β∇d,re

0
t

)
.

(34)

Using Lemma 4.1 to aSLDWG(et, et), we have

∥∥e0t∥∥2 + ∅
2

∥∥e0t∥∥2 + ∅
2
∥∇d,ret∥2 ≤ R1 +R2 +R3 −R4. (35)

Using Lemma 6.1 and Lemma 6.2 for |Ri, i = 1, 2, 3, 4|, we have

|R1| = |(πh (ϵ∇d,rω)− ϵQh(∇d,rω),∇d,ret)|

≤ 1

2∅
∥πh (ϵ∇d,rω)− ϵQh(∇ω)∥2 + ∅

2
∥∇d,ret∥2

≤ Ch2k∥ωh∥2 +
∅
2
∥∇d,ret∥2 ,

|R2| = δ |(πh (β · ∇d,rω)− β ·Qh(∇ω), β · ∇d,ret)|

≤ δ2

2∅1
∥πh (β · ∇d,rω)− β ·Qh(∇ω)∥2 + ∅1

2
∥β · ∇d,ret∥2

≤ (h− ϵ)∥β∥2

2∅1
∥πh (∇d,rω)−Qh(∇ω)∥2 + ∅1∥β∥2

2
∥∇d,ret∥2

≤ Ch2k+2 ∥ωh∥2 − Ch2k ∥ωh∥2 + ∅2 ∥∇d,ret∥2

≤ Ch2k+2 ∥ωh∥2 − Ch2k ∥ωh∥2 + ∅2 ∥∇d,ret∥2 ,
|R3| =

(
cω − c

(
Q0ω

)
, e0t
)

≤ Ch2k
∥∥ω0

h

∥∥2 + ∅
2
∥e0t∥2,

|R4| = (βπh(ω)− (βQω) ,∇d,ret)

≤ ∥β∥2

2∅
∥πh (ω)−Qh(ω)∥2 +

∅
2
∥∇d,ret∥2

≤ ∥β∥2

2∅
∥πh (ω)−Qh(ω)∥2 +

∅
2
∥∇d,ret∥2

≤ Ch2k+2 ∥ωh∥2 +
∅
2
∥∇d,ret∥2 .

(36)
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Substituting |R1|, |R2|, |R3|, |R4| from (36) into inequality (35), we get

∥∥e0t∥∥2 + ∅
2

∥∥e0t∥∥2 + ∅
2
∥∇d,ret∥2 ≤ Ch2k∥ωh∥2 +

∅
2
∥∇d,ret∥2 +Ch2k+2 ∥ωh∥2 − Ch2k ∥ωh∥2

+ ∅2 ∥∇d,ret∥2 +C2h
2k
∥∥ω0

h

∥∥2 + ∅
2
∥e0t∥2 − Ch2k+2 ∥ωh∥2

− ∅
2

∥∥∇d,re
0
t

∥∥2 ,∥∥e0t∥∥2 + η ∥∇d,ret∥2 ≤ Ch2k∥ωh∥2,
d

dt
(
∥∥e0∥∥2 + η ∥∇d,re∥2) ≤ Ch2k∥ωh∥2,

where η = ∅
2 −∅2, and integrate the inequality from 0 to t to accumulate the error effect over time:∫ t

0

d

dτ

(
∥e0(τ)∥2 + η∥∇d,re(τ)∥2

)
dτ ≤

∫ t

0

Ch2k∥ωh(τ)∥2dτ.

Simplify the integrated inequality to:

∥e0(t)∥2 + η∥∇d,re(t)∥2 ≤
∫ t

0

Ch2k∥ωh(τ)∥2dτ + (∥e0(0)∥2 + η∥∇d,re(0)∥2).

8 Numerical Results

We introduce the linear convection-diffusion problem (1)with homogeneous Dirichlet bound-
ary condition and initial condition. On Ω = [0, 1] × [0, 1], and let ϵ = 0.0001 and time range be
(0, T ) = (0, 1], c = 1, and the calculation of the velocity vector will be as follows:

β =
(
cos
(π
3

)
, sin

(π
3

))
,

the initial and boundary conditions and the source term f(x, t) can be obtained from the example
solution. The exact solution [7] is chosen in the example

ω = e−t sin(πx) sin(πy).

To begin, we divide the square domainΩ = [0, 1]×[0, 1] intoN×N sub-squares of equal size. Next,
we partition each square element into two triangles using a diagonal line with a negative slope,
thereby creating a triangular mesh. Let h = 1/N (N = 2, 4, 16, 32, 64) represent the spatial mesh
size. We select a sufficiently small time step T = 0.001 and calculate the error of ω−ωh for L2 and
H1 norms, considering the mesh size. This analysis further validates the theoretical findings. The
obtained results are as follows:

• The Table 1 and Figure 1 give the WGFEM numerical solution and exact solution for the
mesh size h = 1

64 .

• The Table 2 and Figure 2 give the results for the CADWGFEM was introduced.

• The Table 3 and Figure 3 give the results for the SLDWGFEM.
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Table 1: H1− error and L2− error for WGFEM with T = 10−3, ϵ = 10−4.

h L2 − error L2 − order H1 − error H1 − order
2.5000e− 01 8.1892e− 01 0 9.3962e− 01 0
1.2500e− 01 2.0836e− 01 1.9746e+ 00 4.6035e− 01 1.0293e+ 00
6.2500e− 02 5.2079e− 02 2.0003e+ 00 2.2869e− 01 1.0093e+ 00
3.1250e− 02 1.2995e− 02 2.0027e+ 00 1.1403e− 01 1.0040e+ 00
1.5625e− 02 3.2353e− 03 2.0060e+ 00 5.6929e− 02 1.0021e+ 00

Table 2: H1− error and L2− error for CADWGFEM with T = 10−3, ϵ = 10−4.

h L2 − error L2 − order H1 − error H1 − order
2.5000e− 01 1.6378e− 02 0 3.1321e− 02 0
1.2500e− 01 4.1672e− 03 1.9746e + 00 1.5345e− 02 1.0293e + 00
6.2500e− 02 1.0416e− 03 2.0003e + 00 7.6232e− 03 1.0093e + 00
3.1250e− 02 2.5990e− 04 2.0027e + 00 3.8009e− 03 1.0040e + 00
1.5625e− 02 6.4707e− 05 2.0060e + 00 1.8976e− 03 1.0021e + 00

Table 3: H1− error and L2− error for SLDWGFEM with T = 10−3, ϵ = 10−4.

h L2 − error L2 − order H1 − error H1 − order
2.5000e− 01 5.5829e− 03 0 7.8587e− 03 0
1.2500e− 01 1.4346e− 03 1.9604e + 00 3.6161e− 03 1.1199e + 00
6.2500e− 02 3.5821e− 04 2.0018e + 00 1.7581e− 03 1.0404e + 00
3.1250e− 02 8.9248e− 05 2.0049e + 00 8.6948e− 04 1.0158e + 00
1.5625e− 02 2.2278e− 05 2.0022e + 00 4.3331e− 04 1.0047e + 00

Then, the figure is as follows:

Figure 1: (a) The exact solution for problem (1). (b) The approximate solution for problem (1) by WGFEM. (c) Error and order error for
H1-norm.
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Figure 2: (a) The approximate solution for problem (1) by CADWGFEM. (b) Error and order error for H1-norm.

Figure 3: (a) The approximate solution for problem (1) by SLDWGFEM. (b) Error and order error for H1-norm.

The SLDWGFEM approximation (4) can be represented as a matrix problem for each element,
the local stiffness matrix is calculated, making the calculation of the element stiffness matrix an
essential step in implementing the method on a computer. For each triangular element ℵ, there
exists a collection of basis functions denoted as Pm(ℵ). These basis functions are represented by
λ0,i, where i varies from 1 to M0. Additionally, there is a basis function set for all edges of the
element, denoted by λb,i, where i varies from 1 to M b. The set Pm(ℵ) represents a group of basis
functions for

∑
e∈∂ℵ∩∂Λ Pℓ(∂ℵ).

Every weak function ρh =
{
ρ0, ρb

}
∈ Sh(m, ℓ) can be represented in this way:

ρh|T =


N0∑
i=1

ρ0,mλ0,m,

Nb∑
i=1

ρblmλb,m

{λ0 · ρ0, λb · ρb
}
,

ρ0 =


ρ0,1

ρ0,2

...
ρ0,M

0

 , ρb =


ρb,1

ρb,2

...
ρb,M

b

 .

The SLDWGFEM approximation (4) on ℵ is expressed as follows: For j = 1, 2, . . . ,M , find (wj
h) ∈

S0
h and (

δtw
j
h, ρ

0
)
+ a

(
wj

h, ρ
0
)
=
(
f j , ρ0

)
, ∀ρ ∈ S0

h, (37)
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δtw
j
h =

wj+1 − wj

∆t
, ∆t = tn+1 − tn.

The local matrix form of (37) is

µ1

(
W j+1 −W j

)
+∆t (µ2 − µ3 + µ4 + µ5)W

j = ∆tF j , (38)

where

µi =

[
µi
0,0 µi

b,0

µi
0,b µi

b,b

]
, W j =

[
wj

0

wj
b

]
, F j =


f1
f2
...

fM0

 , (39)

where µi
0,0 is an M0 ×M0 matrix, µi

0,b is an M0 ×Mb matrix, µi
b,0 is an Mb ×M0 matrix, µi

b,b is an
Mb ×Mb matrix, and i ranges from 1 to 4. The matrix definitions are as follows:

µ1
0,0 =

(
(Φ0,l,Φ0,i)|ℵ

)
i,l
, µ1

0,b =
(
(Φb,l,Φ0,i)|ℵ

)
i,l
,

µ1
b,0 =

(
(Φ0,l,Φb,i)|ℵ

)
i,l
, µ1

b,b =
(
(Φb,l,Φb,i)|ℵ

)
i,l
,

(Mass matrix),

µ2
0,0 =

(
(∇rΦ0,l,∇rΦ0,i)|ℵ

)
i,l
, µ2

0,b =
(
(∇rΦb,l,∇rΦ0,i)|ℵ

)
i,l
,

µ2
b,0 =

(
(∇rΦ0,l,∇rΦb,i)|ℵ

)
i,l
, µ2

b,b =
(
(∇rΦb,l,∇rΦb,i)|ℵ

)
i,l
,

(Diffusion matrix),

µ3
0,0 =

(
(∇rΦ0,l,Φ0,i)|ℵ

)
i,l
, µ3

0,b =
(
(∇rΦb,l,Φ0,l)|ℵ

)
i,l
,

µ3
b,0 =

(
(∇rΦ0,l,Φb,i)|ℵ

)
i,l
, µ3

b,b =
(
(∇rΦb,l,Φb,i)|ℵ

)
i,l
,

(Convection matrix),

where l and i stand for the column and row matrices, respectively. Each element of the vector fj
is defined as fj =

∫
ℵ fρbdz. This vector is represented as F j = (fj).

To determine the matrices µi, i = 1, 2, 3, 4, we need to calculate the discrete gradient operator
∇dA for the weak function ρh|ℵ, which is expressed as a locally vector. Let ηi, i = 1, 2, . . . ,Mv be
a collection of basis functions of Vr(ℵ). For any qh ∈ Sh, it can then be represented as follows:

qh|ℵ =

Mv∑
i=1

qiηi,

where

q̄ =


q1

q2

...
qM

v

 .

Based on the definition of the discrete weak gradient operator, the vector ∇rρh can be expressed
as follows:

Dℵ
(
∇rρh

)
= −Zℵρ0 + Tℵρb, (40)
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where [Dℵ]Mv×Mv
, [Zℵ]Mv×M0

and [Tℵ]Mv×Mb
are defined as follows:

Dℵ =


∫
ℵ η1 · η1 dΛ · · ·

∫
ℵ η1 · ηMv dΛ

...
. . .

...∫
ℵ ηMv · η1 dΛ · · ·

∫
ℵ ηMv · ηMv dΛ

 ,

Zℵ =


∫
ℵ (∇ · η1) Φ0,1 dΛ · · ·

∫
ℵ (∇ · η1) Φ0,M0

dΛ
...

. . .
...∫

ℵ (∇ · ηMv
) Φ0,1 dΛ · · ·

∫
ℵ (∇ · ηMv

) Φ0,Mv
dΛ

 ,

Tℵ =


∫
∂ℵ (η1 · n) Φb,1 ds · · ·

∫
∂ℵ (η1 · n) Φb,Mb

ds
...

. . .
...∫

∂ℵ (ηM0 · n) Φb,1 ds · · ·
∫
∂ℵ (ηMv · n) Φb,Mb

ds

 .

After computing the matrices Dℵ, Zℵ, and Tℵ, one can use (40) to compute the weak gradient of
basis functions Φ0,j and Φb,J , as shown in [28].(

∇rΦ0,J

)
= −D−1

ℵ Zℵe
−No

J ,
(
∇rΦb,J

)
= D−1

ℵ Tℵe
−Mb

J .

Here, e−M0

J and e−Mb

J are the standard basis vectors. Let us define:

(Yℵ)Mv×Mv
= [h (ηℓ, ηJ)ℵ]J,ℓ ,

(Uℵ)M0,×Mv
=
[
(β.ηℓ,Φ0,J)ℵ

]
J,ℓ

,

(Nℵ)Mv×Mv
= [(β · ηℓ, β · ηJ)ℵ]J,ℓ ,

(Kℵ)M0,×M0
=
[
(cΦ0,ℓ,Φ0,J)ℵ

]
J,ℓ

.

The elementary matrix can represent the local stiffness matrix by substituting the values Mi, i =
1, 2, 3, 4, 5 into (38). A matrix problem can now be formulated using the SLDWGFEM, which is
described by the following lemma.

Lemma 8.1. The local stiffness matrix of SLDWGFEM for (38) is µi, i = 1, 2, 3, 4, 5 can be expressed as

µ1 =

(
Kℵ 0
0 0

)
,

µ2 =

(
Z t̂
ℵD

−t̂
ℵ YℵD

−1
ℵ Zℵ −Z t̂

ℵD
t̂
ℵYℵD

−1
ℵ Tℵ

−T t̂
ℵD

−t̂
ℵ YℵD

−1
ℵ Zℵ T t̂

ℵD
−t̂
ℵ YℵD

−1
ℵ Tℵ

)
,

µ3 =

(
Z t̂
ℵD

−t̂
ℵ NℵD

−1
ℵ Zℵ −Z t̂

ℵD
−t̂
ℵ NℵD

−1
ℵ Tℵ

−T t̂
ℵD

−t̂
ℵ NℵD

−1
ℵ Zℵ T t̂

ℵD
−t̂
ℵ NℵD

−1
ℵ Tℵ

)
,

µ4 =

(
−UℵD

−1
ℵ Zℵ UℵD

−1
ℵ Tℵ

T t̂
ℵD

−t̂
ℵ U t̂

ℵ 0

)
,

(41)

where t̂ stands for the standard matrix transpose and µ1 = µ5.

9 Conclusions

This paper presents and analyses a new numerical scheme for solving elliptic partial differen-
tial equations, the SLDWGFEM. By addressing the inherent limitations of conventional WGFEM
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and its variant, CADWGFEM, in particular with respect to turbulence and stability issues asso-
ciated with small turbulence parameters (ϵ) compared to the grid size (h), our study makes a
significant methodological advance. The introduction of a positive parameter (δ) allows to sim-
plify the propagation, which improves the accuracy of the solution, while reducing unnecessary
crosswind smoothing in CADWGFEM. In addition, it reduces noticeable oscillations, which is a
common problem in WGFEM. This approach provides a better balance between stability and ac-
curacy, significantly improving the performance of previous methods. Our results highlight the
importance of choosing a suitable diffusion direction andmagnitude. This is demonstrated by the
excellent handling of crosswind propagation and the stability of the SLDWGFEM without affect-
ing the accuracy of the solution. Error estimation and optimal ordering in the discrete L2-norm
andH1-norm further validate the theoretical underpinnings of ourmethod, with numerical results
reinforcing its effectiveness.
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